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ABSTRACT

Like the solar cycle, stellar activity cycles are also irregular. Observations reveal that rapidly rotating (young) Sun-like stars

exhibit a high level of activity with no Maunder-like grand minima and rarely display smooth regular activity cycles. On the

other hand, slowly rotating old stars like the Sun have low activity levels and smooth cycles with occasional grand minima.

We, for the first time, try to model these observational trends using flux transport dynamo models. Following previous works,

we build kinematic dynamo models of one solar mass star with different rotation rates. Differential rotation and meridional

circulation are specified with a mean-field hydrodynamic model. We include stochastic fluctuations in the Babcock–Leighton

source of the poloidal field to capture the inherent fluctuations in the stellar convection. Based on extensive simulations, we

find that rapidly rotating stars produce highly irregular cycles with strong magnetic fields and rarely produce Maunder-like

grand minima, whereas the slowly-rotating stars (with a rotation period of 10 days and longer) produce smooth cycles of weaker

strength, long-term modulation in the amplitude, and occasional extended grand minima. The average duration and the frequency

of grand minima increase with decreasing rotation rate. These results can be understood as the tendency of less supercritical

dynamo in slower rotating stars to be more prone to produce extended grand minima.
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1 INTRODUCTION

Sun is not the only star that has a complex and variable magnetic

field. Chromospheric emission of Ca II H & K of many stars with

spectral types from early F to M observed since 1966 through the HK

Project of Mount Wilson Observatory (MWO) revealed the magnetic

cycles (Baliunas et al. 1995). Other recent observations from the

coronal X-ray emission (Wright et al. 2011; Wright & Drake 2016)

and the magnetic field through the Zeeman-Doppler Imaging (ZDI)

(Donati et al. 1992; Vidotto et al. 2014) provide further evidence for

★ E-mail: vindyavashishth.rs.phy19@iitbhu.ac.in

† E-mail: karak.phy@iitbhu.ac.in

magnetic activity in many stars studied earlier using the Ca II H &

K emission for the longer duration.

Stellar magnetic activity is observed to be largely controlled

by rotation. The more rapidly a star rotates, the more active it

is (Skumanich 1972; Rengarajan 1984). Noyes et al. (1984a) and

Wright & Drake (2016) gave the activity-rotation relation using Ca

II H & K and X-ray emissions, respectively. They showed that the

activity increases with the increase in rotation rate (or decrease in

rotation period) for slow and moderate rotators, and then the activity

tends to saturate for the fast-rotating stars.

While most of the earlier observations focused on the activity-

rotation relation, some observations find a trend between the cycle du-
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2 V. Vashishth

ration and the rotation period of different sun-like stars (Noyes et al.

1984b; Soon et al. 1994). Using the chromospheric activity from

HARPS (High Accuracy Radial velocity Planet Searcher) and MWO

data of 4454 cool stars, Boro Saikia et al. (2018) showed that the

trend of the cycle period with the rotation period for the fast rota-

tors is different from the slowly-rotating stars. As the rotation period

increases, the cycle period somewhat decreases for the rapidly ro-

tating stars and increases for the slowly-rotating stars. The trend is,

however, quite complicated for fast rotators.

Our Sun shows the magnetic cycle of 22 years period (11 years

in strength) with amplitude varying somewhat smoothly in the long-

term (beyond the 11-year period) and show occasional extended

periods of weaker activity, the grand minima, e.g., Maunder mini-

mum (Usoskin 2017). Different stars, in contrast, show a wide range

of variability in the magnetic cycles. Baliunas et al. (1995) observed

a smoother variability and occasional grand minima in the mag-

netic cycles of the slowly rotating (old) stars. On the other hand,

they observed much irregular activity and no grand minima in the

rapidly rotating young stars. Oláh et al. (2016); Boro Saikia et al.

(2018); Garg et al. (2019) also produced similar evidences using ad-

ditional data. Recently, Baum et al. (2022) claimed that a K2V star,

HD 166620, has entered into a grand minimum phase, and interest-

ingly, it is a slowly rotating star. Also, Shah et al. (2018) suggests

that HD 4915 is a possible Maunder minimum candidate, although

its rotation period still needs to be confirmed.

A large-scale dynamo, powered by the helical convection and dif-

ferential rotation, is responsible for the generation of the magnetic

cycle in the Sun (Parker 1955). As the other sun-like stars have con-

vection zones (CZs) in their outer layers, it is natural to expect that

these stars also support dynamo action through which the stellar

magnetic cycles are maintained. Some of the stellar cycles (e.g., HD

10476, HD 16160, etc.) are so similar to the solar cycle (in terms

of regular cyclic variation and obeying the Waldmeier effect, which

says that strong cycles rise faster than the weaker ones; Garg et al.

2019) that it suggests a similar dynamo operating in sun and other

sun-like stars (also see Jeffers et al. 2022, for a theoretical argument

behind this expectation). The motivation of our work is to extract the

dependency on the rotation rate of the sun-like stars for their cycle

variability and the occurrence of the grand minima using dynamo

models.

Recently, the Babcock–Leighton mechanism (Babcock 1961;

Leighton 1969), in which the tilted bipolar magnetic regions

produce poloidal field in the sun, has received strong observa-

tional supports (Dasi-Espuig et al. 2010; Kitchatinov & Olemskoy

2011; Priyal et al. 2014; Cameron & Schüssler 2015). Including

this process for the generation of the poloidal field, the Babcock–

Leighton type dynamo models have produced great successes in

providing many observational features of the solar magnetic cy-

cle, including the grand minima (e.g., Choudhuri & Karak 2012;

Olemskoy & Kitchatinov 2013; Passos et al. 2014; Karak & Miesch

2017; Cameron & Schüssler 2017; Lemerle & Charbonneau 2017;

Inceoglu et al. 2017; Biswas et al. 2022).

In the past, Babcock–Leighton dynamo model has also been used

to study the stellar magnetic cycles. For instance, Nandy & Martens

(2007) employed a time-delay dynamo model to investigate the rela-

tionship between the magnetic field and cycle period with the dynamo

number. Jouve et al. (2010) utilized a kinematic Babcock-Leighton

dynamo model to observe that the cycle period increases as the ro-

tation rate increases, unless the meridional flow speed is assumed to

increase with the rotation rate, which contradicts theoretical results

(Miesch 2005; Brown et al. 2008). Later, by employing the non-local

and distributed " effects in non-linear "2 dynamo models for moder-

ate to slowly rotating stars, Pipin (2015) find some agreement of the

cycle period vs rotation period with observation. Karak et al. (2014a)

constructed the Babcock–Leighton type flux transport dynamo model

for sun-like stars with different rotation periods by including differen-

tial rotation and meridional circulation from corresponding hydrody-

namical models of Kitchatinov & Olemskoy (2011). They managed

to reproduce the activity-rotation relation correctly but again failed

to reproduce the cycle period vs rotation rate relation. Recently,

Hazra et al. (2019) performed simulations using the same model but

by including a radial pumping near the surface of the stars. They

found an increasing trend of the cycle period with an increase in the

rotation period for the slowly-rotating stars, and a decreasing trend in

the cycle period for the rapidly rotating stars; also see Do Cao & Brun

(2011) who included latitudinal pumping and found some agreement

with observations. Kitchatinov (2022) studied the stellar activity cy-

cles using a Babcock–Leighton type dynamo model and showed

a strong temperature dependence on the cycle period. Karak et al.

(2020) and Noraz et al. (2022) applied mean-field models in differ-

ent stars and addressed the effect of anti-solar differential rotation

(which naturally arises in the high-Rossby number convection, e.g.,
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Cycle variability and grand minima in Sun-like stars 3

Gastine et al. 2014; Brun et al. 2017; Karak et al. 2018) on the po-

larity reversal and the strength of magnetic field in slowly-rotating

stars. However, to the best of our knowledge, no previous study was

performed to explore the cycle variability and grand minima in stars.

In recent years, global MHD convection simulations have

produced some exciting results of the stellar magnetic cy-

cles (Karak et al. 2015; Augustson et al. 2015; Käpylä et al. 2016;

Strugarek et al. 2018; Viviani et al. 2019; Brun et al. 2022).

Warnecke et al. (2018) analyzed how the magnetic cycle period

changes as a function of the Rossby number. Viviani et al. (2018)

studied the simulations of different stars and showed the transition

of the magnetic field from axi- to non-axisymmetric field config-

uration at around 1.8 times the solar rotation rate, where the dif-

ferential rotation changes from solar to anti-solar. However, these

MHD simulations are not capable of reproducing some basic fea-

tures of the solar cycle (e.g., the 11-year periodicity with regular

reversal, equatorward migration of toroidal field at low latitude, pole-

ward migration of surface radial field, largely dipolar field) and the

correct flow (particularly the observed amplitude of the convective

flow) robustly, there lies the uncertainty of whether these results

hold in stars. Being computationally expensive, these simulations

were not applied to study the long-term variability of stellar cy-

cles; however, see Passos & Charbonneau (2014); Augustson et al.

(2015); Käpylä et al. (2016), who have performed simulations for

several cycles which may be used for long-term studies.

In this paper, we apply the models of Karak et al. (2014a) and

Hazra et al. (2019) to study the irregularities of the stellar cycle,

in particular, how the variability and the frequency of grand

minima change with the stellar rotation. For this, we shall include

the stochastic fluctuations to capture the inherent randomness

in the stellar convection (Choudhuri 1992) as seen in the form

of noise in the flux emergence and the tilts of BMRs around

Joy’s law (Dasi-Espuig et al. 2010; Stenflo & Kosovichev 2012;

McClintock et al. 2014; Wang et al. 2015; Arlt et al. 2016; Jha et al.

2020) (Section 2). We shall see that our models produce a strong

magnetic activity and highly irregular cycles in rapidly rotating

stars and, on the contrary, a weak magnetic activity and more

regular cycles in slowly-rotating stars (Section 3.1). Maunder-like

extended grand minima are only produced in slowly-rotating stars

(with rotation period of 10 days and longer), and the frequency of

occurrence of these events increase with the increase in the rotation

period of the star (Section 3.3).

2 MODEL

We build our model based on Karak et al. (2014a) where the follow-

ing equations for the axisymmetric magnetic field are evolved,
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where Bp = ∇ × [$() , *)e# ] is the poloidal component of the

magnetic field and +() , *) is the toroidal component, & = ) sin *,

vp = ,! )̂ + ," *̂ is the meridional circulation, Ω is the angular

velocity. While Ω is well-measured in the whole CZ of the sun,

the meridional flow is only constrained in the near-surface layer

of the Sun. Recent helioseismic studies for the deep meridional

circulation indicate a single-cell flow in the solar convection zone

(Rajaguru & Antia 2015; Gizon et al. 2020). Observations for other

stars, on the other hand, are limited to the surface differential ro-

tation only. Global MHD simulations for the sun-like stars provide

differential rotation, which often shows transition from solar to anti-

solar profile with increasing Rossby number near the solar value,

and the meridional flow, which is multi-cellular and time varying

(e.g., Featherstone & Miesch 2015; Karak et al. 2015; Viviani et al.

2019). Therefore, for vp and Ω, we use the data from a mean-field

hydrodynamic model of Kitchatinov & Olemskoy (2011). This nu-

merical model jointly solves the mean-field equations for the an-

gular velocity, meridional flow, and heat transport in a spherical

layer of a stellar convection zone. The model produces the solar-

type differential rotation as a consequence of angular momentum

fluxes. The one-cell per hemisphere meridional flow predicted by

the model for the sun agrees with the recent seismological detec-

tion (Rajaguru & Antia 2015; Gizon et al. 2020). Also, the com-

puted dependence of differential rotation on stellar rotation rate

and spectral type (Kitchatinov & Olemskoy 2012b) is in at least

qualitative agreement with observations by Barnes et al. (2005) and

Balona & Abedigamba (2016). The model, however, does not pro-

duce the tachocline self-consistently; rather, it has the lower boundary

MNRAS 000, 1–13 (2023)



4 V. Vashishth

at 0.72.$ (.$ being the stellar radius). Therefore, the tachocline in

our dynamo model is formed by smoothly varying the Ωmodel () , *)

from the differential rotation model at ) = 0.72.$ to the value of the

rotation rate at the core Ωcore in the following way:

Ω() , *) = Ωmodel () , *) +
1

2
[Ωcore −Ωmodel (0.72.$ , *)] (3)

×

[

1 − erf

(

) − 0.7.$

0.02.$

)]

.

The ' is the turbulent magnetic diffusivity and is taken as a function

of ) alone, having the following form:

'()) = 'RZ +
'SCZ

2

[

1 + erf

(

) − )BCZ

-%

)]

+
'surf

2

[

1 + erf

(

) − )surf

-2

)]

(4)

with )BCZ = 0.7.$ , -% = 0.015.$ , -2 = 0.05.$ , )surf = 0.95.$ ,

'RZ, 'SCZ, and 'surf represent the diffusivities, at the inner boundary,

within CZ, and at the surface respectively, having the values as 'RZ =

5 × 108 cm2 s−1, 'SCZ = 5 × 1010 cm2 s−1, and 'surf = 2 × 1012

cm2 s−1. The diffusivity profile of Eq. (4) approaches 'RZ at the

inner boundary of 0.6.$ , remains at 'SCZ in the bulk of CZ and

increases to 'surf at the surface (see figure 5 in Karak et al. 2014a).

We have ignored the change of diffusivity with the rotation rate

and the magnetic field in our study due to its limited knowledge in

estimating its value in different stars.

The term (() , *; +) is the source for the generation of poloidal

field which captures the Babcock–Leighton mechanism in our ax-

isymmetric model, and it is given by,

(() , *; +) =
"0 "() , *)

1 +
(

+()% , *)/+0

)2
+()% , *), (5)

where "0 is the strength of Babcock–Leighton process, +()% , *) is

the toroidal field at latitude * averaged over the whole tachocline

) = 0.685.$ to ) = 0.715.$ . From Eq. (5) we observe that when

the magnetic field becomes comparable to +0 (the saturation field

strength), the nonlinearity becomes important and the field eventu-

ally tends to hover around +0. Therefore, everywhere in our study,

we measure the magnetic field in the unit of +0. While in the tradi-

tional " effect based on the helical convection, above " quenching

is obvious, the Babcock–Leighton " also experiences a quenching

due to the fact that BMRs with strong fields rise quickly and Cori-

olis force gets less time to induce tilt and the strong magnetic field

also gives more tension which causes less tilt (D’Silva & Choudhuri

1993; Fan et al. 1994). Observations indeed find some evidence of tilt

quenching (Jha et al. 2020). Furthermore, the latitudinal variation of

BMRs (stronger cycles produce BMRs at higher latitudes) gives rise

to quenching in the Babcock–Leighton process (Jiang 2020; Karak

2020).

We have limited knowledge about the Babcock–Leighton process

in other stars and thus we are not sure of how the strength of this

process changes with the rotation of the star. On theoretical grounds,

we expect the tilt of bipolar magnetic regions to increase with the

increase of the rotation rate of stars (D’Silva & Choudhuri 1993;

Kitchatinov & Olemskoy 2015). However, there is an opposing effect

that arises due to the fact that with the increase of rotation rate, the

latitudes of BMR emergences are expected to shift to higher latitudes

(Schuessler & Solanki 1992) and higher latitudes BMRs are less

efficient in producing polar field (Jiang et al. 2014; Karak 2020). In

our study, the strength of Babcock–Leighton process "0, is chosen to

depend on the rotation in the following way,

"0 = "0,$
/$

/rot
, (6)

where "0,$ is the value of "0 for the solar case and /$ and /rot are

the rotation period of Sun and the star, respectively.

The Babcock–Leighton process includes considerable random-

ness, primarily due to irregular variations in the tilts and emergence

rates of the bipolar active regions (Jiang et al. 2014). Therefore, we

include fluctuations in the " appearing in Eq. (6) in the following

way.

"0,$ = "0,$0&, (7)

where 0& is the Gaussian random number with a mean of unity and

standard deviation (1) of 2.67. This value of 1 is inspired by the

study of Olemskoy et al. (2013), who computed the fluctuations in

the Babcock–Leighton process by estimating the contribution of the

sunspot group to the polar field using the data of Royal Greenwich,

Kodaikanal and Mount Wilson Observatories. We keep the value of

1 same throughout all the simulations presented in this paper. In our

models, the value of "0 is updated randomly after a certain time step

which we take to be one month.

It may be noted that other model parameters like eddy diffusivity or

turbulent pumping can also include fluctuations due to randomness

inherent to turbulent stellar convection. However, the fluctuations are

relatively small and less consequential compared to the fluctuations

in the Babcock–Leighton mechanism. In particular, fluctuations in

the angular momentum fluxes produce only small variations in the

MNRAS 000, 1–13 (2023)



Cycle variability and grand minima in Sun-like stars 5

differential rotation and moderate fluctuations in the meridional flow

(Rempel 2005). Thus, these fluctuations are neglected. The differen-

tial rotation and meridional flow are steady and equator-symmetric

in our model.

2.1 Model I

In this case, we use the same model as given in Karak et al. (2014a)

except the value of the strength of the Babcock–Leighton ", and we

add fluctuations in the Babcock–Leighton process. In this model, the

value of "0 is taken as 0.9 cm s−1 (instead of 1.6 cm s−1 which was

used in Karak et al. (2014a)).

As in Babcock–Leighton models, " captures the average effect of

the decay of tilted BMRs, it must be non-zero only near the surface,

and it must have cos * dependence due to the angular dependence of

the Coriolis force which is the possible cause of BMR tilt. However,

to suppress the poloidal field generation in high latitudes (as BMRs

do not appear in high latitudes), a sin * factor is also introduced

(see, e.g., Dikpati & Charbonneau 1999). Therefore in this model,

the profile of " is given by,

"() , *) =
1

4

[

1 + erf

(

) − )4

-4

)] [

1 − erf

(

) − )5

-5

)]

sin * cos * (8)

with )4 = 0.95.$ , )5 = .$ , -4 = 0.05.$ , -5 = 0.01.$ .

2.2 Model II

In the previous model (Model I), one hemisphere of the sun was

used to study the dynamo, for which a dipolar boundary condition

was imposed at the equator. This did not allow us to observe the

magnetic field configuration across the equator and the hemispheric

asymmetry of the magnetic field, which are very relevant for the solar

and stellar observations (DeRosa et al. 2012). Therefore, in Model II,

we extend the same Model I to the full sphere of the sun, and we

include the fluctuations separately in the two hemispheres. Other

than extending Model I to the full sphere and thus eliminating the

equatorial boundary condition, no other changes are made.

2.3 Model III

Finally, we take Model III which is same as Model II but at increased

diffusivity and added radial magnetic pumping. This inclusion of

pumping is inspired by Hazra et al. (2019), who found some agree-

ment of the cycle period vs rotation trend with observations. It was

realized that a downward magnetic pumping helps to make the mag-

netic field radial near the surface and reduce the toroidal flux loss

through the surface, making the dynamo model in accordance with

the surface flux transport models and observations (Cameron et al.

2012). The near-surface pumping also helps the dynamo to oper-

ate at a high diffusivity range consistent with the mixing-length

theory (Kitchatinov & Olemskoy 2012a; Karak & Cameron 2016;

Karak & Miesch 2017), and facilitates the model to recover from

the Maunder-like extended grand minima (Karak & Miesch 2018).

The pumping has the following form:

2 = −20

[

1 + erf

(

) − 0.9.$

0.02.$

)]

, (9)

where the amplitude of the radial magnetic pumping is given by 20

which is 24 m s−1 in all the stars.

We note that we do not use the exact same model of Hazra et al.

(2019) because, in that model, when we include fluctuations, even the

solar case does not produce the dipolar field as seen in the observa-

tions. Therefore, to obtain the dipolar field, we reduce the diffusivity

for the bulk of the CZ by taking the following parameters (Eq. (4)):

'SCZ = 3 × 1011 cm2 s−1, and 'surf = 3 × 1012 cm2 s−1. We note

that with these parameters, the diffusivity in the whole CZ is about

six times stronger than that used in Models I and II.

The " profile used in this model is given by,

"() , *) =
1

2

[

1 + erf
( ) − )surf

-

)]

sin2 * cos *, (10)

where - = 0.01.$ . The "0 has the same form (Eq. (6)) as in Model I,

except in this case, "0,$ = 4 cm s−1 and fluctuations in this model

are included separately in the two hemispheres. We note that above

" in Eq. (10) has a sin2 * cos * dependence instead of sin * cos * as

used in Models I-II to make the " effect strong (weaker) in low (high)

latitudes. Also, the radial extent of this " is a bit wider than that used

in Models I-II.

After specifying all the parameters, we solve the above equations

1 and 2 numerically in the SCZ with the radial extent of 0.55.$

to .$ and the following boundary conditions. We take, at the lower

boundary: $ = + = 0, at the top (surface) layer: + = +" = 0 (i.e.,

radial boundary condition), at poles: + = $ = 0 (i.e., no singularity)

and at the equator for Model I: + = 0 = #$/#* = 0 (dipolar

condition). Simulations are performed in 129 × 129 grid points in

radial and latitudinal directions.

MNRAS 000, 1–13 (2023)



6 V. Vashishth

Figure 1. Time–latitude plots of toroidal field at ! = 0.71'" (in the unit of

(0) for different stars with rotation period of (a) 1 day, (b) 7 days, (c) the

solar value ( i.e., 25.38 days), and (d) 30 days for Model I.

3 RESULTS AND DISCUSSIONS

We initialized our dynamo simulations for stars of solar mass

with rotation periods of 1, 3, 7, 10, 15, 20, 25.38 (Sun), and 30

days, respectively, by computing differential rotation and merid-

ional circulation from the mean-field hydrodynamic model of

Kitchatinov & Olemskoy (2011). The following sections discuss the

various aspects of magnetic cycles obtained from all three models.

3.1 Magnetic field morphology

Fig. 1 depicts the butterfly diagrams of the toroidal field at the base

of CZ for the rotation periods 1, 7, 25.38, and 30 days from Model I.

After analyzing these panels, we find the regular polarity reversal.

However, in Model II (see Fig. 2) the magnetic cycles are a bit irreg-

ular. We observe a strong hemispheric asymmetry in the magnetic

field. Sometimes the magnetic field in one hemisphere is largely

suppressed or enhanced. Hence, in Model II, the polarity reversal is

not regular. Finally, for Model III (Fig. 3), we observe that for the

rapidly rotating case and the Sun, regular reversal is seen, but for in-

termediate and slow rotators, the polarity reversal is not regular. The

magnetic field distribution for the rotation period of 7 and 30 days

show extended cycles. However, for the 7 days case, the magnetic

field is largely quadrupolar, while for the 30 days case, it is largely

bipolar. We observe that the magnetic field distribution at higher

radial layers is largely different. We also note that for the slowly-

rotating stars with a rotation period of ≥ 10 days, the magnetic field

is largely dipolar. In contrast, for the rotation period of 7 days and

less, the parity is changed to largely quadrupolar, although there are

sometimes when the parity remains dipolar.

In all the models for the slowly-rotating stars, we observe an equa-

Figure 2. Same as Fig. 1, but for Model II

Figure 3. Same as Fig. 1, but from Model III.

torward migration of the toroidal field at the low latitudes as a con-

sequence of the transport by the equatorward meridional circulation

(Figure 3 of Karak et al. 2014a). However, for the rapidly rotating

stars, we find a weak poleward migration of the field in high lati-

tudes, particularly see Fig. 3(a). This poleward migration is due to

the diffusion of the field from the mid-latitude where the toroidal field

generation is strongest (also see Fig. 6 & 10 in Hazra et al. 2019).

Moreover, the meridional flow is much weaker in rapidly rotating

stars.

One obvious feature in these simulations is that the magnetic

field becomes strong in fast-rotating stars. This happens because the

strength of " increases with the rotation rate of the star. This increase

MNRAS 000, 1–13 (2023)



Cycle variability and grand minima in Sun-like stars 7

in the magnetic field is congruous with the observations (Noyes et al.

1984a; Wright et al. 2011). While in observations, the magnetic field

is saturated in rapidly rotating stars, our model always produces an

increasing trend with the rotation rate. This is because, in our model,

the latitude of operation of the Babcock–Leighton process (the band

of BMR emergences) is fixed in all stars, while in observations, it

increases. Thus, the generation of poloidal field is less efficient in

rapidly rotating stars (Kitchatinov & Olemskoy 2015).

These time-latitude plots also give a hint about the variability ob-

served in different stars. Slowly-rotating stars seem to produce more

long-term modulation in their cycles, including extended episodes of

weaker magnetic field. In contrast, fast rotators generate less modula-

tion. This result is in agreement with observations. The root cause for

such behavior is that the slowly-rotating stars have a small dynamo

number. Due to this, if the magnetic cycle gets weaker sometimes,

then it would take a long time to grow the field. Therefore, we see

a long-term modulation in the slowly-rotating stars. But for the fast

rotators, the cycle recovers its strength quickly after getting into the

weak phase. In fast rotators, the dynamo number is high so the growth

rate is very high. This trend is also explained in Kumar et al. (2021)

and Vashishth et al. (2021). The results are in accordance with the

observations as well (Baliunas et al. 1995). A detailed discussion of

the cycle variability is made in Section 3.3.

3.2 Cycle duration vs rotation period

We now compute the cycle periods for all three models. This is done

by determining the peak of the Fourier power spectrum of the time

series of the toroidal field over the tachocline for both the northern

and southern hemispheres separately. However, due to the irregular

nature of the cycles in Model III, we fail to identify a prominent peak

in the power spectrum and hence cannot identify the dominant cycle

period for the stars having a rotation period of less than 10 days.

Fortunately, we are able to find a range in which the cycle periods of

these stars could lie. The computed cycle periods for all the models

are listed in Table 1, and the variations with the rotation rate are

shown in Fig. 4. This figure infers an increasing trend of the cycle

period with the stellar rotation rate for both Models I and II. This

increasing trend is quicker in the fast-rotating stars and milder in the

slowly-rotating stars. This happens because, as the rotation period

decreases (or rotation rate increases), the meridional flow becomes

Figure 4. Variations of the activity cycle period ()cyc in years) with rotation

period ()rot in days) for (a) Models I (filled circles) and II (asterisks) and (b)

Model III (solid and dashed lines are for northern and southern hemispheres,

respectively).

weaker (although the flow speed increases in the thin layers near the

top and bottom boundaries).

Although these two models reproduce various stellar observa-

tions, they fail to reproduce the magnetic cycle period vs. rotation

trend correctly for the slowly-rotating stars. Limited observations

(Boro Saikia et al. 2018) seem to show a rapid increase in the cycle

period with the increase of the rotation rate for fast-rotating stars.

This is consistent with the trend found in our Models I-II. However,

the observed data for slow rotators show an increasing trend of the

activity cycle period with the increase in rotation period, which is

opposite to the findings in Models I-II. One way to resolve this dis-

crepancy is to include radial magnetic pumping in the stellar CZs.

Hazra et al. (2019), after including the pumping, got a trend some-

what similar to the observations. In our Model III, after including

radial pumping, we also got the cycle-rotation period trend closer

to the observations. It is also possible that the observed trend is

a consequence of strong decrease of the cycle period with stellar

effective temperature and on average faster rotation of hotter stars

(Kitchatinov 2022). A different trend of the cycle period with the ro-

tation period found in Model III is due to the operation of the dynamo
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Table 1. Summary of simulations. Here, )rot is the rotation period of the star in days, and )cyc is the mean magnetic cycle period in each hemisphere. For each

model, the number of grand minima and parity are computed from the surface radial and the toroidal fields at the base of CZ, which are separated by a comma.

)rot (d) )cyc (yr) No. of grand minima Parity

Model I Model II (N, S) Model III (N, S) Model I Model II Model III Model II Model III

1 13.68 12.89, 12.76 7.81–9.18, 7.26–9.45 0, 0 0, 0 0, 0 0.013, −0.053 0.434, 0.410

3 11.27 10.64, 12.25 7.87–8.78, 7.63–8.91 0, 0 0, 0 0, 0 0.003, −0.043 −0.726, −0.742

7 9.15 8.46, 9.15 7.69–8.56, 8.26–9.25 0, 0 0, 0 0, 0 −0.015, −0.079 −0.685, −0.676

10 7.62 7.96, 7.42 10.09, 11.16 2, 4 0, 0 2, 2 0.009, −0.032 −0.786, −0.788

15 6.92 7.13, 6.82 10.47, 10.71 6, 15 2, 4 3, 4 0.001, −0.038 −0.844, −0.846

20 6.44 6.15, 6.45 12.69, 12.59 17, 22 6, 12 6, 8 0.009, −0.011 −0.831, −0.830

25.38 (Sun) 5.65 6.15, 5.79 11.78, 12.55 32, 40 16, 21 8, 12 −0.117, −0.194 −0.699, −0.830

30 5.65 5.74, 5.65 12.24, 13.80 36, 41 19, 24 10,16 −0.138, −0.201 −0.889, −0.888

Figure 5. Time series plot along with its smoothed variation of toroidal

magnetic field for Model I of stars having rotation period of (a) 1 day, (b)

7 days, (c) 25.38 days (the solar value), and (d) 30 days. The dark-red bars

highlight the extended weaker activity episodes i.e., grand minima in each

case.

in a pumping-dominated regime. When strong downward magnetic

pumping is included in this model, the diffusion of the magnetic field

across the surface becomes negligible and then the dynamo allows it

to operate at a low " (Karak & Cameron 2016). Lower the " longer

is the cycle period. We can see from Fig. 4 that at 30 days rotation

period, while Models I-II were producing a cycle period of 6 years,

Model III produced a much longer period of 13 years. Then with the

decrease of the rotation period, the " becomes stronger and thus the

poloidal field generation process becomes more efficient. This makes

the reversal of the field faster. This effect in the pumping-dominated

regime overpowers the increase of the cycle period due to a decrease

in meridional flow speed.

3.3 Variability and grand minima occurrence

We now come across the central question of our study , i.e. how the

long-term variability of the stellar cycles changes with the rotation

Figure 6. Same as Fig. 5 but computed from the absolute radial magnetic

field, averaged over the whole surface for Model III.

Figure 7. Variation of Hurst exponent with respect to the rotation rate along

with the linear-fit curve of all the models.

rates of the stars. In our model, the cycle variability is produced due

to the randomness in the Babcock–Leighton mechanism. To analyze

the long-term variability qualitatively, we carefully observe the time

series data of the toroidal magnetic flux of the northern hemisphere

and the absolute radial magnetic field averaged over the whole surface

from a simulation of 11,000 years. Figs. 5 and 6 show the discussed
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Figure 8. Change of (a) the number and (b) the average duration of grand minima with the rotation period of stars. Yellow circles, blue asterisks, and red

diamonds depict the trends for Models I, II, and III, respectively. In (b), the error bars are computed from the standard deviation of the durations of the grand

minima in each case.

time series plots of the toroidal flux for Model I and the radial field

from Model III.

From these figures, we can easily see that the fast rotators produce

irregular cycles with smaller long-term variability, and on the other

hand, slowly-rotating stars produce more long-term modulation in

their cycles with episodes of extended weak magnetic fields.

To make a quantitative estimate of the irregularities and the long-

term memory in the time series for each case, we compute the well-

known Hurst exponent (3), which gives a measure of the temporal

memory or persistence in the time series. A value of 3 = 0.5 implies

that the time series is obtained from a memoryless random process.

On the other hand, if a time series gives 3 > 0.5, then it suggests to

have persistence. When a system has a memory that depends on the

previous step, it is said to be persistent and thus in the time series if

there was an increase in the value, it is more likely that the following

step(s) will increase as well. In this case, the time series will cover

more ‘distance’ than a random walk can. When 3 < 0.5, the opposite

applies and it is said to be anti-persistent. When there is a long-term

modulation in the stellar cycle data, we expect a memory and the

value of 3 should be larger than 0.5. A larger value of 3 implies

large long-term memory in the stellar cycle.

To obtain the Hurst exponent, we use the famous ./( method

as given in Mandelbrot & Wallis (1969) and applied to many solar

data in the past (Ruzmaikin et al. 1994; Suyal et al. 2009; Das et al.

2022). To do so, we first bin the data by using a bin-size of half

a year. Then, to evaluate 3, the binned time series is divided into

several shorter time series of length 4 = 50. The average re-scaled

range (./() is then calculated for each temporal window 4. At last,

the slope of the 567(./() vs 567(4) values gives the value of 3.

Fig. 7 shows the values of 3 evaluated in all the models for each

star. A linear fit to all the data shows the overall increase in 3

with the rotation period. After analyzing this figure, we come to

the conclusion that for the rapidly rotating stars, there is little long-

term modulation and cycles are more irregular. Whereas a long-

term memory is seen in slowly-rotating stars. Hence, the persistence

increases as the rotation period increases. Interestingly, these results

are in-tune with the observations (Baliunas et al. 1995; Oláh et al.

2016).

Finally, we identify the grand minima from the time series of

the toroidal field at the base of CZ and the surface radial field. For

this, we employ the same method as used in Usoskin et al. (2007)

for the Sun; i.e., we first bin the data by using a bin-size of the

duration of one cycle, then we filter the data by using Gleissberg’s

low-pass filter 1-2-2-2-1. This gives us the smoothed data. Finally,

the portion of this data that falls below 50% of its mean for at least two

consecutive cycle periods, is considered as a grand minimum. Later

we count these numbers of grand minima to evaluate the frequency

of occurrence of grand minima in each case. The computed number

of grand minima for all the models are listed in Table 1.

From Fig. 8a, we infer that in all the models, the number of grand

minima increases with the increase in rotation period. Rapidly ro-

tating stars hardly produce any grand minima, in fact, stars with

a rotation period of 7 days or less, do not produce any Maunder-

like grand minima. On the other hand, slowly-rotating stars produce

some grand minima with an increasing trend with the rotation period.

This is because, with the increase of rotation period, the supercrit-

icality of the dynamo decreases, and the dynamo is more prone to

produce extended grand minima in this regime. This result is as per
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Vashishth et al. (2021) where we observe a decrease in the frequency

of occurrence of grand minima as the supercriticality increases. To

check the robustness of this result, we run our simulations with an-

other set of Gaussian random numbers having the same mean and 1

as the previous case. We again find the same conclusion that stars

with /*+* ≤ 7 days, do not produce grand minima, and the number

of grand minima increases with the increase in rotation period.

Additionally, we estimated the change in the average duration of

grand minima with the stellar rotation. This variation is depicted

in Fig. 8b. Similar to the frequency, the average duration of grand

minima increases with the increase of rotation period for all models

except for the rotation period of 30 days in Model III. The associ-

ation of the frequency of occurrence of the grand minima with the

duration of these events is shown via histogram in Fig. 9. With the

help of Fig. 8b and Fig. 9, we can easily infer that the duration of

the stellar grand minima falls mostly below 150 years, while the av-

erage value lies below 70 years only. In Model I, we see a few grand

minima occurring for longer duration due to the absence of hemi-

spheric coupling. In full sphere models (Models II-III), hemispheric

coupling helps to recover the model from extended grand minima

easily (Karak & Miesch 2018) and thus this does not produce very

long grand minima. Further, in the Sun, we get about 10–40 grand

minima (depending on which model we are considering), while in

observations, this number is 27. And the result, that most of the solar

grand minima hover below 150 years is in agreement with observa-

tions (Usoskin 2017).

4 CONCLUSIONS AND DISCUSSION

From our extensive simulations of the kinematic flux transport dy-

namo model with stochastically forced Babcock–Leighton source for

the stars of 1M$ mass with rotation periods of 1, 3, 7, 10, 15, 20,

25.38 (solar value), and 30 days, we make the following inferences.

(i) Rapidly rotating stars produce a strong magnetic field and the

strength of the field increases with the increase of rotation rate which

is in accordance with the observations (Noyes et al. 1984a). The in-

crease of field with the increase of rotation rate in our model is due

to the enhancement of the strength of the Babcock–Leighton source.

(ii) The cycle period increases with the increase of the rotation rate of

the stars (in Models I-II) due to the weakening of the meridional cir-

culation. However, when the downward turbulent magnetic pumping

is included (in Model III), cycles become longer in slowly-rotating

Figure 9. Relation between frequency of occurrence of grand minima with

the corresponding duration in Model I-III for the stars in which grand minima

are observed.

stars and shorter (although become very irregular) in rapid rota-

tors. Thus, pumping helps to bring the results closer to observations

(Boro Saikia et al. 2018) as also suggested by Hazra et al. (2019).

(iii) Strong hemispheric asymmetry is produced in the magnetic field

for all the stars. In general, the quadrupolar field dominates in the

rapidly rotating stars and the dipolar field dominates in the sun and

slowly-rotating stars.

(iv) In rapidly rotating stars, the stellar magnetic cycles are highly

irregular, while in slowly-rotating stars cycles are more regular and

the cycle amplitude displays a smooth long-term modulation. These

results are consistent with the stellar observations (Baliunas et al.

1995; Boro Saikia et al. 2018; Oláh et al. 2016; Garg et al. 2019).

(v) Only slowly-rotating stars with rotation period ≥ 10 days produce

MNRAS 000, 1–13 (2023)
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grand minima. The number and the average duration of grand min-

ima increase with the increase of the rotation period of the stars. This

is again supported by the available observations because the con-

firmed Maunder minimum candidates are only slow rotators (Sun

(/rot = 25.38 d), HD 166620 (/rot = 45 d); Baum et al. 2022).

(vi) The length of the stellar grand minima lies mostly below 150

years. However, in the one hemisphere (Model I) model, several

grand minima occur with longer duration. The average duration of

grand minima in this model is longer than the other two models be-

cause the hemispheric coupling is absent in this model. In full sphere

models (Models II-III), hemispheric coupling helps to recover the

model from extended grand minima easily (Karak & Miesch 2018;

Hazra & Nandy 2019) and thus this does not produce very long grand

minima. The result that most of the solar grand minima hover below

150 years is in agreement with the reconstructed solar activity data

(Usoskin 2017).

Although many results of stellar cycles are robust and congruous

with observations, there are limitations to our study. First, we have

considered the only nonlinearity through the standard " quenching

and we have ignored the nonlinear feedback of the magnetic field

on large-scale flows. While, in the sun, this is not a concern, in the

rapidly rotating stars having a strong magnetic field, this nonlinearity

can have a serious impact in producing cycle irregularity. Second,

the turbulent transport coefficients are expected to change with the

rotation and the magnetic field (Kitchatinov et al. 1994; Karak et al.

2014b) and they can change the dynamo properties. Due to limited

knowledge of their variations in different stars, we have not changed

their values in our models. Third, the level of stochastic noise is

kept constant in all the stars, again due to its limited knowledge.

Fourth, we have not considered the turbulent " effect, which in the

Sun is negligible in comparison to the Babcock–Leighton process

(Cameron & Schüssler 2015), but may becomes increasingly impor-

tant in the rapidly rotating stars. However, our results of the trend

of the cycle variability and the grand minima are not expected to

change with many details of the model (e.g., type of nonlinearity,

stochastic fluctuations, turbulent transport) because they depend on

the amount of supercriticality of the model. It is obvious to ac-

cept that the dynamo supercriticality decreases with the decrease

of the rotation rate of the star (mainly due to the decrease of ").

Extended grand minima are easy to produce when the dynamo is

near critical (Kitchatinov & Olemskoy 2010; Vashishth et al. 2021).

Also, observations hint that the solar dynamo (which produce grand

minima) is operating near the critical transition (Rengarajan 1984;

Metcalfe et al. 2016). Furthermore, observing some robust results

(mainly the increase of the number and duration of grand minima

with the increase of rotation period) in all the models having different

parameters, we can have some confidence that our results will be val-

idated in the more realistic stellar dynamo models and observations.
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